# INTERNSHIP PROGRAMME FOR UG DEGREE (SEMESTER-V)

(For the students admitted under New Curriculum and Credit Framework from the academic session 2023-24)



| Course Title:        |                                  |  |
|----------------------|----------------------------------|--|
| <b>Soliton-Based</b> | <b>Fiber Optic Communication</b> |  |
|                      | 201                              |  |

| Internship Providing Organization (IPO): | Department of Physics<br>Bankura Sammilani College                                             |
|------------------------------------------|------------------------------------------------------------------------------------------------|
| <b>Category of Course:</b>               | For UG DEGREE (SEM-V)                                                                          |
| Duration:                                | 60 Hours                                                                                       |
| Course Coordinator and Contact Details:  | Mr. Chakradhar Rajowar<br>Mob: 7797123239                                                      |
| Mentors:                                 | Mr. Uttam Mandal Dr. Priyam Das Dr. Pradipta Chakraborty Mr. Narendranath Pal Mr. Surajit Bosu |
| Intake Capacity:                         | 25 Students                                                                                    |
| Course Fees:                             | Rs. 100/- (Students from Host Institution)<br>Rs. 400/- (Students from Other Institution)      |

### **SYLLABUS**

## Course Title: Soliton-Based Fiber Optic Communication [50 Marks/2 Credits/60 Hours]

#### **Learning Outcomes (LO)**

- Understand the fundamental principles of soliton formation
- Analyze the role of dispersion and nonlinearity in optical fiber systems
- Model and simulate soliton pulse dynamics
- Design soliton-based communication systems
- Assess practical challenges in soliton communication
- Implement dispersion and loss management techniques
- Explore advanced soliton concepts and current research trends
- Critically evaluate research literature in nonlinear fiber optics

#### **Unit -1: Introduction to Optical Fiber Communication**

[5 hours]

- Overview of optical fiber systems
- History and evolution of fiber optic communication
- Advantages and limitations
- System components: Transmitters, fibers, receivers, amplifiers

#### **Unit -2: Fundamentals of Nonlinear Optics**

[10 hours]

- Linear vs nonlinear effects in fibers
- Self-phase modulation (SPM)
- Cross-phase modulation (XPM)
- Four-wave mixing (FWM)
- Raman and Brillouin scattering

#### **Unit-3: Pulse Propagation in Optical Fibers**

[5 hours]

- Group velocity dispersion (GVD)
- Dispersion length and nonlinear length
- Combined effects of dispersion and nonlinearity

#### **Unit-4: Optical Solitons – Basics**

[5 hours]

- Soliton concept and history
- Derivation of Nonlinear Schrödinger Equation (NLSE)
- Fundamental solitons and higher-order solitons
- Soliton solutions of the NLSE

#### **Unit-5: Soliton Propagation in Optical Fibers**

[5 hours]

- Conditions for soliton propagation
- Role of dispersion and nonlinearity balance

- Soliton self-frequency shift
- Soliton collisions and interactions

#### **Unit-6: Soliton in Communication Systems**

[20 hours]

- Soliton generation techniques,
- Soliton-based system architectures
- Bit rate limitations and time-division multiplexing
- Optical amplifiers and loss management
- Dispersion management and sliding-frequency guiding filters
- Amplifier noise and timing jitter (Gordon-Haus effect)
- Polarization mode dispersion
- Soliton-soliton interactions
- Effects of fiber non-idealities
- Dark solitons vs bright solitons
- Dissipative solitons
- Chirped solitons

#### Hands-on-training/Assignment/ Problem solving skills

[10 hours]

#### **Textbooks and References:**

- G. P. Agrawal, Nonlinear Fiber Optics, 6th Edition, Academic Press.
- Govind P. Agrawal, Applications of Nonlinear Fiber Optics
- Linn F. Mollenauer & James P. Gordon, Solitons in Optical Fibers: Fundamentals and Applications
- A. Hasegawa & M. Matsumoto, Optical Solitons in Fibers